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Hartree Fock Slater Method 

I. The Transition State Method 
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A transition state method has been proposed for the calculation of bonding 
energies and bond distances within the Hartree Fock Slater Method. Calcula- 
tions on a number of diatomic molecules and a few transition metal complexes 
show better agreement with experiment than corresponding Hartree Fock 
results. The proposed transition state method gives a direct connection between 
bond orders and bonding energies. 
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1. Introduction 

The Hartree Fock Slater method has proved itself a powerful tool for the calcula- 
tion of ionization energies [1], electronic excitation energies [2] and one-electron 
expectation values [3]. It is shown in this communication that the method is 
equally useful for the calculation of bonding energies, De, and bond distances, 
R e. Some promising results have already been presented by Sambe and Felton [4] 
and by Heijser, Kessel and Baerends [5]. Both groups introduced some approxi- 
mations in their calculations. Sambe and Felton represented p and pl/3 by a 
number of auxiliary functions centred on the nuclei, but retained only the l= 0 
components. The higher order terms are all included in the DVM-HFS method 
by Baerends et al. [6]. The problem here is the particular numerical integration 
scheme used to evaluate all relevant matrix elements. Experience [6] has shown 
that the Diophantine numerical integration scheme can calculate Hartree Fock 
Slater matrix elements to a good accuracy with relatively few sample points, 
whereas the number of points required to evaluate the statistical energy is as much 
as two orders of magnitude higher. Such numbers of sample points impose a 
prohibitive computational effort even for the smallest of systems. Thus the Dutch 
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group [5] was forced to use less than the required number of points. Bond distances 
have also been calculated by the Multiple Scattering method in which the Muffin- 
tin approximation is applied [7]. 

We have introduced a transition state method for calculation of bonding energies 
in Sect. 2. By evaluating some parts of the bonding energy analytically, quite 
accurate results are obtained using the same number of points necessary for the 
calculation of Hartree Fock Slater matrix elements, without increasing the 
computation time ' significantly. Results from calculations on some diatomic 
molecules and a few transition metal complexes are shown in Sect. 3. 

2. Evaluation of Bonding Energies 

2.1. The Statistical Eneryy Expression 

The total statistical energy due to an electronic system with the one-electron 
density pi(X1, X~) is given by [8]: 

EHFS= _I f(X~)px(XI' X'~) dX 1 

X = X '  

+�89 ~p,(X,)p~(x2)/r,2 dX~ dX2 
3 r ot + ~ ~P l(rl) VGFs( r, ) dri 

+ ~ ip~(r~ ) V~HFs(r~ ) dr, 
n u c l e i  

+�89 ~ ~ ZAZa/IRA -- RBI. (2.1) 
A ~ B  

Wheref(Xi)  is the sum of the operators for the kinetic energy of the electrons and 
the attraction energy between the electrons and the nuclei. The functions p] (ri) and 
p~(r i) are the densities of electrons with spin up and spin down respectively, and X 1 
is the generalized co-ordinate of an electron at position r 1 with the spin co-ordinate 
s~. The function V~Fs(r 1), characteristic for the HFS-method, is given by 

V~FS(r l) = _ 3k[�88 i/a, (2.2) 

with a similar expression for Vn~Fs(ri), where k is the so-called exchange scale 
factor taken to be 0.7 for the rest of this work [6, 9]. The last term in Eq. (2.1) 
represents the electrostatic repulsion between the different nuclei Z A and Z~. 

2.2. The Hartree-Fock Slater One-Electron Equation 

The one electron HFS equation [8] is derived by writing p](ri) and p~(ri) in 
terms of molecular orbitals and the corresponding occupation numbers as 

P~(Vl) = ~  n~u~(ri)u~(ri)' (2.3) 
i 
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and require that the total energy shall be stable with respect to any variation in the 
orbital set {u~(rl) }. The system of equations for u~(rl) has the form 

h (r 1)u i (r t ) - e i ui (rl) (2.4) 

where 

h~(rl) =fir 1) + ~pl(X2)/r12 dX  2 + V~FS(r 1), (2.5) 

with a similar equation for orbitals of spin down, uPi(rl). The orbital energy e~ can be 
related to the total energy EaF s [8] by considering the derivative dEsFs/dn~ given by 

d EHvs/ dn~ = ( (~ EHFs/ b P l )ha ( 3 P l / bn~ )uj + (3EHFs/bn~)uj" (2.6) 

The first term is zero since Env s is assumed stable to any variation in the orbital 
set {u~} for a fixed set of occupation numbers, thus 

(6EnFs/fiP 1),,~ = 0. (2.6a) 

The second term of Eq. (2.6) gives after substitution of Eq. (2.3) into Eq. (2.1) and 
straightforward differentiation 

(6F~F s/gn~),~ = ~. (2.7) 

The subscript uj in Eq. (2.7) indicates that the orbital set is fixed. We will use 
Eq. (2.7) in the next section. 

2.3. The Transition State Method for the Calculation of  Bonding Energies 

Co_=_nsider the molecule AB with a one electron density PER, where the subscript 
AB indicates that the molecule is formed from the two electronic systems A and B 
with densities PA and PB. The energies of A, B and AB are defined by the one- 
electron densities and might be written as E(pA), E(p~) and E(pEB ) respectively. 
It is likewise pcssible to define an energy for the density pAB=pA+PB for any 
distance between A and B. The energy E(pAB ) is given by 

~(PA.) = E(PA) + E(p.) + Ee~ + AE~x+ ~EL, (2.8) 
where 

t ~ 

E~, -- ~ Z Z,~Zo./I g~ . -  R,. I +/pA(rl  )pB(r2)/rl 2 drl dr2 
gA gB d 

-- ~ f pB(rl )ZoA/[rl -- RgA ldrl -- ~ f pA(rl)Zo./,rl -- RoBI dr 1 (2.9) 
0A 0B 

is the electrostatic interaction between molecule A and B, and 

A E~ -- pA(rl ) V~IFs(PA(rt )) dr1 P~(rl) V~IFs(PB(rl )) dr1 

f p~B (r,) V~s(p~(r,)) d~, (2.10) + 

with a similar expression for AE~. 
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The densities PAB and PX-B can both be expressed in terms of the occupied and virtual 
orbitals of A and B called {ui} as 

PAB = ~ P~]u~(r~)u~(r~ ) + ~ P~u~(rx)u~(r~) (2.11) 
i i 

and 

6t ~X ~X fl PUB = Z (Pu + A P,j)uf (r~)uj(r~ ) + Z (P,, + A P~)u~(r 1 )u~(r~ ). (2.12) 
i j  i j  

There Pu is the bond order matrix for PAB and P~j. 6~j + d P~j the bond order matrix 
for Pa-B, both with respect to the bhsis {u~}. 

It is further expedient to introduce a transition state density p T, the average density 
of PAB and Pa-B, given by 

a a Uct pT= ~, Q~ju i (r~) j(r~) + ~ Qaiju~(r ~)u~(r~), (2.13) 
u ij 

where 

_ �9 1 ~ ( 2 . 1 4 )  Qij - P ij ~ij + ~A Pij. 

Substitution of Eq. (2.13) into Eq. (2.1) and straightforward differentiation gives 
us the relation 

(6E( p T)/6 Q~j) = ~V~ (2.15) 

where 

T- -  I f i j -  u~(rl)h~rl)u~(rl ) dr1, (2.16) 

and 

h~r(rl) =f(X1) + (pT(r2)/ri2 dr2 + V~vs(P~T(rl )). (2. 17) 

Equation (2.15), which is a generalization of Eq. (2.7), now enables us to calculate 
the bonding energy AE=--E(p~-B)+E(pA)+E(pB ) in the following way. The 
energies E(PAB) and E(PX--B) are expressed as a Taylor expansion in terms of E(pT) 
and its first and second derivatives with respect to Qij, 

E(PAB)=E(PT) -1 E 3E(pT)/bQi3 APIJ 
u 

+~ ~ ~ (62E(pT)/6Q~j 6Qkl) AP u An u (2.18) 
kl i j  

ij 

+~ ~ ~ (62E(pT)/bQ~3 6Qu ) AP,j APkt, (2.19) 
kl ij  

where i, j, k and l runs over orbitals of spin up as well as spin down. The two 
equations (2.18) and (2.19) give 

E(p~-~)- E(pAB ) = ~ F~ dPij. (2.20) 
ij 
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Finally for the bonding energy one gets from Eq. (2.8) 

--E(p~-B) + E(pA)+ E(pB)= -Ee~-  AEex- ~, F TAP 0 (2.21) 
ij 

correct to the second order derivatives of E(Pr) with regard to Qij. Here i and j 
in Eq. (2.21) run over orbitals of spin up and spin down. 

The third order derivatives contribute to the bonding energy with the term 

Z -ijEt3) APij= -2~ ~ ~ Z (63Er/t~Qij bQkt bQmn) APkt AP, m APIJ . (2.22) 
i j  i j  k l  m n  

This term can be incorporated into Eq. (2.21) by observing that 

AB F T t Fij =(¢SEAB/6Qij) : ij--7 ~ (c32ET/6Qij C~Qkl) APkl 
kl  

+k ~ ~ (63ET/fQij 6Qkz 6Q,,,) APkt AP,,, (2.23) 
kl  mn 

and 

F'ij ------ (6E~-~)/6 Qij) = Fij -k- ~ 2 (62ET/(~ Qij t~Qkl ) APkl 
kl 

+~ ~ ~ ((~3ET/fQIj fiOkt t~Omn) APk, APm,. (2.24) 
kl  m n  

Thus 

~ 7 ' ( 3 ) -  1 j~7"T I • A B  l A B  (2.25) 
~ i j  - -  3 a i j - - 6 ~ i j  - - 6 i j  • 

Since all even order contributions to the bonding energy are zero one gets the 
following expression for the bonding energy, correct to the fourth order 

AE= - Eel -- AE,~- ~ f--2 JT'T -1- 1 p A B  ~_ 1 J ? A B  "~ APij ' (2.26) 
( 3 ~ i j t ~ x i j  ~ 6 ~ i j  J 

i j  

where F~ F AB F ~  are the matrix elements over the set {u~} with respect to the 
tJ ~ i j  , 

Hartree-Fock-Slater operators constructed from the densities PT, PAB and p ~  
respectively. 

3. Results and Discussion 

3.1. Computational Procedure 

The HFS one-electron equation is solved in the DVM-HFS method [6] by 
evaluating all HFS matrix elements in the Diophantine numerical integration 
scheme [10, 11]. One might attempt to calculate bonding energies from the 
expression given in Eq. (2.26) by the same numerical method. The result is shown 
in Table 1 for F 2 as a function of the number of sample points, under AE 1 . About 
100,000 points seem necessary to acquire an accuracy of about 0.01 a.u. An 
analysis showed that the slow convergence of AE~ as a function of the number of 
sample points was due to the first term in Eq. (2.26), Eez. 



6 T. Ziegler and A. Rauk 

Table I. The entry AE 1 is the bonding energy of the F 2 molecule calculated at R=2.717 a.u. from 
numerical integration of all three terms in Eq. (2.26). The entry AE 2 is the bonding energy of the same 
molecule calculated by analytical integration of the first term,/~e~, of Eq. (2.26)i Both AEI and AE 2 are 
shown as a function of the number of sample points. 

Number of sample points 

1.000 10.000 20.000 40.000 100.000 
AE1 (a.u.) 0.3171 0.2361 0 .1474 0.0721 0.1142 
AE 2 (a.u.) 0 .1184 0.1204 0.1210 0.1210 0.1211 

This problem was circumvented by calculating Ee~ analytically f rom a fit (least 
square) of  PA and PB over Slater-type functions placed on the different centres [6]. 
The calculation of Eez then requires the evaluation of two centre Coulomb integrals 
and electron-nuclei attraction integrals for which efficient programs already exist. 
The bonding energy in which Eez is calculated analytically and the two remaining 
terms of Eq. (2.26) numerically is shown in Table 1, as A E  2 . The difference between 
A E  2 calculated at 1,000 points and 100,000 points is now 0.003 a.u. 

We are looking for a method which can calculate the statistical bonding energy to 
an accuracy of -+ 0.005 a.u., for the same number  of  sample points used to obtain 
molecular orbitals and molecular orbital energies. Such an accuracy is obtained in 
the case of  F 2 where one would use typically 1,000 points (500 points for each first 
row element) to solve the HFS one electron equation. 

Calculations on a number  of  diatomic molecules (see Sect. 3.2 and Sect. 3.3) with 
1,000 points and 10,000 points, and a few transition metal  complexes with 2,000 
points and 15,000 points, showed in all cases a difference in A E  2 less than 0.005 a.u. 
It  thus appears  that the method described above gives the required accuracy 
(_+0.005 a.u.) at least for the sample of  compounds  discussed in the next two 
sections. 

3.2. Calculation on Dia tomie  Molecules  

The Har t ree-Fock energy EnF(R) is the expectation value of an optimal one- 
determinantal  wave function with respect to the exact Hamiltonian. 

The statistical energy expression Envs(R)  is on the other hand a model based on 
some physical assumptions [8]. We found it interesting to compare Envs(R ) with 
EHF(R ) and experimental results, Eex(R ). This is done in Table 2 in terms of the 
spectroscopic constants, R e, D e and c~ e. The function Envs(R  ) from HFS calcula- 
tions with an extended (Ext) basis gives in all cases values for D e, R e and co e in 
better agreement with experiment than Env (R) f rom H F  calculation using a 
similar basis. This is shown in detail for N 2 and the first three states of  N~- in Fig. 1. 

Experiment, Fig. lb,  reveals a convergence of the two N~ states, X and A, at 
large inter-atomic distances, and a cross-over of  A and B at small distances. Both 
trends are reproduced by Envs(R)  but not by EHF(R ) where, in addition the A state 
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Fig. 1. The energy of N 2 and the first three states of N~- as a function of the inter-atomic distance. 
Fig. la is from HF calculations [12], Fig. lb from a KKR analysis [123 and Fig. lc from HFS 
calculations. The unit at the ordinate is 0.05 a.u. 

is p laced  be low X. Resul ts  f rom doub le  zeta  (DZ)  calcula t ions ,  Table  2, show tha t  
basis  set effects are  impor t an t ,  but  it is h o p e d  tha t  these effects are  less severe for  
molecules  wi th  longer  in te r -a tomic  distances.  

3.3. Calculation on Transition Metal Complexes 

The three  t e t r ahedra l  oxo complexes  M n O 4 ,  CrO42- and  R u O  4 were chosen  as 
test cases for  t rans i t ion  meta l  complexes ,  since r a t h e r  extensive H F  ca lcu la t ions  
have been p e r f o r m e d  on M n 0 2 .  The  results  f rom doub le  zeta  H F S  ca lcu la t ions  
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Table 2. Calculation of bond distances (R~), bond energies (De) and vibrational frequencies (c%) 
from HFS double zeta-(DZ) and extended (EXT) basis set calculations compared to experiment* and 
results from extended HF  calculation ~. The spectroscopic constants were obtained from a cubic fit 
of 9 independent calculations around R,.  

R.  (a.u.) D e (ev.) 

DZ EXT HF  EXP DZ  EXT HF  

~ (cm 1) 

EXP DZ EXT H F  EXP 

F 2 2.75 2.6I 2.51 2.68 3.04 3.54 - 1 , 6 3  1.67 890 1207 1257 892 
O 2 2.45 2.33 2.18 2.28 2.45 4.14 1.43 5,22 1364 1563 2000 1580 
N z 2.17 2.11 2.01 2.07 9.38 10.86 5.27 9,91 2125 2456 2730 2358 
N 2 ( + ) - X  b 2.11 2.04 2.11 2382 2570 2207 
N 2 ( + ) - A  2.23 2.13 2.22 2084 2312 1902 
N a ( + ) - B  2.04 1.94 2.03 2606 3101 2419 
CO 2.24 2.16 2.08 2.13 7.58 9.41 7.89 11,22 1946 2248 2431 2170 
NO 2.33 2.19 2.17 4.95 6.42 6,62 1640 1903 1904 

" Ref. [5]. b Reg [12]. 

are shown in Table 3. Here R e is the metal to ligand equilibrium bond distance, (9 e 
the total symmetric stretching frequency and D e the energy for the process: 

M + 4 0 + n e -  , MO~- ,  (3.1) 

where a positive value for D e indicates that M O ] -  is stable with respect to its 
components.  The bonding energy is only known experimentally for RuO 4 where 
Nikol 'skii  et  aI. [3] give the value 0.7012 a.u. It  is to be expected that  D e should 
be positive for all three complexes and an estimate based on the known bonding 
energies of  MnO 2 and CrO 3 gives a value around 0.7 a.u. for both CrO 2- and 
M n O 2 .  

Table 3. Calculations of bond distances (Re) , the symmetric stretching frequency co e and bonding 
energies D~ for some tetrahedral oxocomplexes in a DZ-basis.  A~ is the groundstate corresponding to 
the configuration 01) 6 and T~ is the excited state corresponding to the configuration (tl)5(2e) ~. The 
transition A ~ ~ T~ is the first dipole allowed excitation for all three complexes [2]. The spectroscopic 
constants  were obtained from a cubic fit of  5 independent calculations around R e . 

R (a.u.) co e (cm-  t) D e (a.u.) 

State cal exp cal exp cal exp 

MnO~- AI 3.05 3.08" 776 838 b 0.6033 ~0.7  f 
T~ 3.12 - -  770 777 e 

CrO2_ A~ 3.13 3.14 a 916 840 b 0.6429 ~0 .7  
T~ 3.20 - -  876 722 a 

A ~ 3.25 3.21 a 851 883 b 0.7481 0.7012 g 
RuO4 T~ 3.37 803 782 e 

" Ref. [-16]. b Ref. [ i7] .  c Ref. [18]. d Ref. [19]. e Ref. [20]. f Ref. [14]. Q Ref. [13]. 
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The HFS method predicts all three complexes, Table 3, to be strongly bonding and 
thus stable with respect to their components. 

A HF  calculation of MnO 4 in a minimal basis set by Dacre e t  al .  [14] gave a 
bonding energy of -0 .513  a.u. The authors in Ref. [14] ascribed the large dis- 
crepancy to the use of a rather small basis. Johansen [15] has recently carried out 
a near HF limit calculation on the same complex from which he obtained D e = 
-0.225, thus the calculated bonding energy still has the wrong sign! 

Negative values for D e were also obtained from near HF limit calculations of  
C10~- and PO43- whereas a large basis set calculation on SO 2- only gave a small 
positive bonding energy [15]. All three compounds are assumed to be strongly 
bonding. 

The bonding energies calculated by the HF method is a lower bond to the 
experimental value, thus the inclusion of configuration interaction (CI) would 
gradually increase the bonding energy towards the correct value. In the case of  
MnO,~ as much as 0.9 a.u. has to be accounted for by CI calculations. The HFS 
method on the other hand avoids CI calculations by utilizing a model energy 
functional (the statistical energy expression). It seems, Table 3, that the statistical 
energy expression is well suited for the calculation of De, O) e and Re, at least for 
the complexes treated in this section. 

4. Summary 

It is hoped that the procedure outlined and applied in the previous sections finally 
will make it possible to apply the HFS method to problems concerning the struc- 
ture and reactivity of molecules. 

The transition state method presented in Sect. 2 was developed in order to study 
the weakly bonding interactions between metal fragments and organic molecules 
as they occur in catalysis and chemisorption. We will show in a forthcoming 
communication how such interactions can be studied in depth from the last term 
of Eq. (2.26), where a direct relation is given between bond orders, A P ~ ,  and the 
bonding energy. 
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